Strong Alliances in Graphs

Authors

Abstract:

For any simple connected graph $G=(V,E)$, a defensive alliance is a subset $S$ of $V$ satisfying the condition that every vertex $vin S$ has at most one more neighbour in $V-S$ than it has in $S$. The minimum cardinality of any defensive alliance in $G$ is called the alliance number of $G$, denoted $a(G)$. In this paper, we introduce a new type of alliance number called $k$-strong alliance number and its varieties. The bounds for 1-strong alliance number in terms of different graphical parameters are determined and the characterizations of graphs with 1-strong alliance number 1, 2, and $n$ are obtained.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On global (strong) defensive alliances in some product graphs

A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...

full text

Weighted Alliances in Graphs

Let G = (V, E) be a graph and let W:V→N be a non-negative integer weighting of the vertices in V. A nonempty set of vertices S ⊆ V is called a weighted defensive alliance if ∀v ∈ S ,∑u∈N[v]∩S w(u) ≥ ∑x∈N(v)−S w(x). A non-empty set S ⊆ V is a weighted offensive alliance if ∀v ∈ δS ,∑u∈N(v)∩S w(u) ≥ ∑x∈N[v]−S w(x). A weighted alliance which is both defensive and offensive is called a weighted pow...

full text

Small Alliances in Graphs

Let G = (V, E) be a graph. A nonempty subset S ⊆ V is a (strong defensive) alliance of G if every node in S has at least as many neighbors in S than in V \S. This work is motivated by the following observation: when G is a locally structured graph its nodes typically belong to small alliances. Despite the fact that finding the smallest alliance in a graph is NP-hard, we can at least compute in ...

full text

Offensive alliances in graphs

A set S is an offensive alliance if for every vertex v in its boundary N(S)−S it holds that the majority of vertices in v’s closed neighbourhood are in S. The offensive alliance number is the minimum cardinality of an offensive alliance. In this paper we explore the bounds on the offensive alliance and the strong offensive alliance numbers (where a strict majority is required). In particular, w...

full text

Global Defensive Alliances in Graphs

A defensive alliance in a graph G = (V,E) is a set of vertices S ⊆ V satisfying the condition that for every vertex v ∈ S, the number of neighbors v has in S plus one (counting v) is at least as large as the number of neighbors it has in V − S. Because of such an alliance, the vertices in S, agreeing to mutually support each other, have the strength of numbers to be able to defend themselves fr...

full text

Upper k-Alliances in Graphs

A nonempty set S ⊆ V is a defensive k-alliance in Γ = (V,E), k ∈ [−Δ,Δ] ∩ Z, if for every v ∈ S, δS(v) ≥ δS̄(v) + k. An defensive kalliance S is called critical if no proper subset of S is an defensive k-alliances in Γ = (V,E). The upper defensive k-alliance number of Γ, denoted by Ak(Γ), is defined as the maximum cardinality of a critical defensive k-alliance in Γ. In this paper we study the ma...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  1- 13

publication date 2019-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023